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ScienceDirect
Burgeoning sequencing technologies are driving a genomic

revolution that provides the potential for a deeper and more

integrative understanding of animal behavior. Behavioral traits

are likely to result from epistatic relationships among genes,

and techniques like RNA sequencing (RNAseq) can bring us

closer to understanding these systems. RNAseq can reveal all

mRNA produced at a specific sampling point, exposing

correlations between genes or genetic networks and behavioral

phenotypes. This technology is becoming increasingly

available to biologists studying nontraditional model organisms

and can unearth important species-specific genetic regulators

and interactions that may have been previously overlooked

with only candidate gene investigations. Initial description of

gene expression associated with a given behavior, followed by

hypothesis-driven approaches and experimental

manipulations, can now provide one of the most in-depth

explorations of bidirectional interactions between genes and

animal behavior.
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The sequencing of the human genome [1,2] costing $3

billion dollars, paved the way for the advancement of less

expensive genomic tools that have revolutionized the

depth and breadth at which researchers may study mecha-

nistic phenomenon. Now, for as little as a few thousand

dollars, it is possible to obtain the genome and transcrip-

tome sequence of any organism from which nucleic acids

can be obtained. Initially, applications of this sequencing

technology were limited to biomedical fields. For example,

DNA sequencing has been used to identify genetic indi-

cators of diseases [3] and to develop effective methods
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of treating them [4,5]. Now, these technologies, includ-

ing RNA sequencing, have been applied in many other

fields of biology, including the study of animal behavior,

and are becoming critical resources for researchers

interested in gaining a deeper, mechanistic understand-

ing. The volume of human and non-human genomic

data is growing exponentially, with large consortium-

based projects (e.g. The 5000 Insect Genome Project,

1000 Fungal Genomes Project, NSF Plant Genome

Research Program, Genome 10K Project) driving this

growth.

For a complete and integrative understanding of animal

behavior (sensu [6�]), researchers often apply a framework

developed by Nikolaas Tinbergen [7] to understand the

mechanistic, ontogenic, phylogenic and adaptive signifi-

cance of behavior. The mechanistic drivers of behavior

generally involve complex interactions between multiple

levels of biological organization, from DNA to hormones

and physiology to the social and physical environment

that an organism inhabits. Indeed, we now know that the

genome can respond dynamically to environmental sti-

muli in a way that is potentially adaptive (e.g. [8,9]).

Thus, emerging genomic tools like RNA sequencing

(RNAseq [10�]) combined with classic animal behavior

methodologies and experimental manipulations can help

to unravel the mysteries of the dynamic genome, how it

functions at different levels of biological organization, and

how these networks influence, and are influenced by

animal behavior.

How does RNAseq work?
Prior to the emergence of next generation sequencing

technology (NGS), studies with goals that included un-

derstanding the genetic correlates of behavior often relied

on candidate gene approaches. Although powerful, these

approaches are generally limited to the examination of

only a few genes. RNAseq is a technique, applicable to

traditional model and non-traditional model systems

alike, that allows the gene expression of all transcripts

(mRNA) in a given tissue to be estimated simultaneously

[11], therefore offering significant advantage over the

candidate gene approach. The process begins by the

extraction of RNA from an appropriate tissue (e.g. the

preoptic area of the brain in a study of the neuromechan-

isms of a particular reproductive behavior). A sequencing

library is created to retain all transcripts, including those

that have not yet been described. Sequence data are

generated on a high-throughput sequencing platform that

has the ability to yield hundreds of millions of sequence
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reads per run. This enables the detection and quantifica-

tion of both very rare and very abundant transcripts.

These raw sequence data are assembled into a reference

set of transcripts (e.g. de novo transcriptome assembly)

whose abundance is then estimated [13]. Although pat-

terns of expression are often tightly linked and responsive

to environmental conditions, a vibrant new field of

study — one that links patterns of expression to expres-

sion quantitative trait loci (eQTL) [14] — is allowing

researchers to explore variation in gene expression. This

new and exciting paradigm presents the opportunity to

link a behavior with both heritable and non-heritable

patterns of gene expression.

Comparative genomic approaches yield new
discoveries
By contrast to studies that utilize RNAseq, comparative

genomic approaches have typically quantified the expres-

sion of a limited number of specific genes of interest and

leveraged these genetic data against distantly related

model organisms (e.g. Homo, Mus, or Drosophila). Now,

the advent of cheaper methods of sequencing DNA and

RNA has allowed researchers to produce whole genome

or transcriptome data (the collection of all transcripts

expressed in a given tissue) directly for both study organ-

ism and related species, thus enabling a comparative

genomics approach. Consequently, the mechanisms driv-

ing animal behavior can now be investigated at a level of

inquiry previously reserved solely for humans, rodents

and flies (Table 1). Indeed, any species now has the

potential to be a ‘model’, with an array of tools allowing

for study of genomic and physiological processes [15�].
For example, Schunter et al. [16�] used RNAseq to

elucidate mechanisms associated with alternative repro-

ductive strategies in the black-faced blenny (Tripterygion
delaisi). Some males of this species maintain territories on

which they attract females and guard nests, while other

‘sneaker’ males mimic female behavior, sneaking into

nests and copulating with females. Schunter et al. [16�]
identified differentially expressed genes according to
Table 1

A Tinbergian approach to studying animal behavior using genomic too

that would together lead to an integrative understanding of proximate a
incorporate genomic tools like RNAseq.

Classic Tinbergian questions 

Mechanism What is the mechanism that elicits behavior X? 

Ontogeny How does behavior X change within an

individual during development?

Adaptation How does behavior X affect the organism’s

chances of survival and reproduction?

Evolution How did/does behavior X evolve? 
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mating tactic and sex. Importantly, these genes differed

from the candidate genes previously used to study alter-

native mating tactics in other species of fish [16�]. Thus,

although certain genes and functions can be conserved

across species, important species-specific genetic regula-

tors may have been overlooked by studies adopting the

traditional candidate gene approach. By examining all

changes in expression occurring in a given tissue(s),

specific genes can still be tested in a targeted, hypothe-

sis-driven approach. Moreover, this approach will facili-

tate the potential identification of new gene regulators

and enable the creation of more complete species-specific

genetic toolkits with which to study the mechanisms of

behavior.

Complex traits require a systems biology
approach
The candidate gene approach is powerful for many types

of investigations, but applying functional genomics to

behavioral traits may require a systems biology approach.

Behavioral phenotypes are typically coded by regulatory

gene networks (e.g. [17,18]) which likely are influenced

by epistatic interactions. Although it is currently difficult

to characterize the entire complement of genetic mecha-

nisms for a particular behavioral phenotype, the ability for

us to do this may be in our near future. Already, data

gathered by RNAseq can be used to mathematically

determine how genes form complex networks that gen-

erate behavioral phenotypes [17]. Indeed, exciting dis-

coveries have been made by studying co-expressed gene

sets (i.e. modules; [19–21]), though it is not completely

clear how to best describe these relationships and their

role in behavior and its evolution. Moreover, the relation-

ship of genetic modules to physiological systems must

also be considered, particularly given the advent of ge-

nomic editing and manipulation. How do genes form

networks with hormones, the immune system, and other

physiological variables to shape or respond to behavior?

How do they work through neural circuitry to influence

and be influenced by behavior? These questions present
ls. Nikolaas Tinbergen highlighted four main categories of inquiry

nd ultimate causes of behavior. Here, we adapt these questions to

Questions now possible with genomic tools like RNASeq

Do differences in gene expression, as opposed to or in relation to

other physiological (like endorcine) drivers, elicit behavior X?

Behavior X varies through development, but does the expression of

key genes drive this? Do we see different behaviorally-relevant

genes being expressed differently during development?

Can we see signatures of molecular adaptation in transcripts that

underlie adaptive behaviors?

Are the transcripts or patterns of gene expression underlying

behavior X in species 1 the same ones underlying the behavior

in species 2, 3, 4, 5?
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the next big challenge in our path toward obtaining the

most integrative understanding yet of the biological

mechanisms that explain animal behavior.

A more integrated understanding of animal
behavior
Technologies like RNAseq offer researchers a direct

means of integrating their level(s) of biological question-

ing and analyses with disciplines previously considered

distinct from the field of animal behavior, such as molecular

biology [22] and computational biology [23]. Genomic data

collected during studies of behavioral phenomenon may

also allow researchers to address questions related to

population genetics (e.g. natural selection, mutation, and

drift), itself an exceptionally vibrant and active area of

research [24–26]. Statistical rigor (i.e. appropriate replica-

tion and controls) in such studies will allow comparisons

of gene activity among individuals and populations to be

made, as well as the identification of differential expression

in gene sets or networks in response to experimental

conditions, or ecological, behavioral, and temporal changes

[20].

This newfound ability to collect genome-wide data on

patterns of expression in relation to behavior has provided

the opportunity to pose and answer questions that were

previously impossible. A descriptive ‘natural history’ of

the genome(s) of interest is often a critical first step to

understanding the genes that underlie a behavior (e.g.

[20,27]). Indeed, the integrative study of animal behavior

embraces the need for hypothesis generation in addition to
classic hypothesis testing [6�]. Once genomic candidates

or networks have been identified, inter-species and intra-

species comparative studies of the behavior of interest, or

of the behavioral response to environmental manipula-

tion, can yield expression profiles that illuminate the

function of the organized network, be it gene, endocrine,

or other. Armed with such knowledge, other emerging

technologies may further help to disentangle correlation

from causation (e.g. RNA interference, RNAi, to silence

genetic expression [28], or CRISPR/Cas9 to edit parts of

the genome [29] corresponding to genes critical for regu-

lation of a given pathway).

Despite the potential advantages of NGS technologies,

the utility of enormous genomic datasets has been debat-

ed. Do technologies such as RNAseq lead to a better

understanding of animal behavior, or as researchers like

Zuk and Balenger [30] question, are they ‘a new kind of

mechanism, illuminating more details but possibly dis-

tracting us from a more process-driven approach’? Has the

current data-deluge resulted in researchers becoming

‘lost in the map’ [31], a figurative description of all

behavior-linked mechanisms, rather than truly enhancing

our understanding of the mechanistic underpinnings of

behavioral phenotypes? These questions are valuable as

they remind us that it is necessary to proceed with
www.sciencedirect.com 
caution, both in terms of project design and data analysis

and interpretation. However, it is clearer now that rather

than obfuscating our position on the map, the use of

genomic tools has increased the size and resolution of

the map, leading us toward a more integrative under-

standing behavioral ecology [32,33�], phenotypic plastic-

ity [34], behavioral evolution [35], the evolution of

personality [36], behavioral development, adaptation

and life-history theory [37,38]. Synthesizing more infor-

mation undoubtedly creates new and various challenges.

However, it also creates unprecedented and integrative

opportunities to enhance our understanding of animal

behavior (Table 1).
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